반응형 [논문 리뷰]On the Unreasonable Effectiveness of Centroids in Image Retrieval Abstract 재식별 task SOTA 제안 방법의 전체 architecture 기존 이미지 검색, 재식별 → 갤러리 내 쿼리에서 유사 이미지 검색하는 방식(metric learning: input data간 거리 학습)을 주로 사용 Hard negative sampling(mining) 클래스 불균형 문제 해결을 위한 방법 hard negative(negative인데 postive라고 잘못 예측한 데이터)를 모아 원본 데이터셋에 추가하여 재학습하면 false positive 오류에 강해짐 문제점: 배치의 모든 샘플 사이의 거리 계산하는 방법으로 cost가 커짐 문제점: tiplet loss와 사용할 경우 tiplet loss의 특성 point-to-point loss 때문에 노이즈 레이블 발생하기 쉬.. 2023. 3. 14. [논문 리뷰] Part-Based Obstacle Detection Using a Multiple Output Neural Network 시맨틱 시그멘테이션 관련 논문 컬러 이미지를 입력으로 사용하는 인코더-디코더 구조를 기반으로 하는 다중 헤드 인공 신경망 출력: 장애물 감지 모듈, 시맨틱 세그멘테이션 모듈, 소실점 감지 모듈 인코더: 입력 이미지에서 적절하고 중요한 특징 추출 시맨틱 세그멘테이션 솔루션 기반 디코더: 여러 예측(출력) 제공 각 모듈을 독립적으로 훈련, 동일 손실 함수 사용 픽셀 기반 특징 추출: ResNet 기반 자유 공간, 특정 장애물에 레이블을 지정X -> 시맨틱 세그멘테이션 CNN을 활용 이미지 픽셀에 해당 개체 부분 레이블 지정 conv 블록: 2D 컨볼루션, 배치 정규화,ReLU 활성화의 세 가지 작업으로 나누어짐 각 conv 블록: 2D 컨볼루션, 배치 정규화 작업 및 ReLU 활성화 필터 수와 커널 크기가 .. 2023. 1. 18. 이전 1 다음 반응형