반응형 CHAPTER 4 word2vec 속도 개선 3장에서의 word2vec 문제점 input layer의 one-hot 표현과 가중치 행렬 $W_{in}$의 곱 계산 어휘 수가 많아지면 one-hot vector의 size도 커짐(상당한 memory차지) hidden layer의 가중치 행렬 $W_{out} $의 곱 Softmax layer 계산 위 2개의 계산이 병목되며 많은 계산시간이 소요하는 문제 발생 #해결방법 -> Embedding Layer -> Negative Sampling(loss function) Embedding Layer 가중치 parameter로부터 '단어 ID에 해당하는 vector'를 추출하는 layer 기존 one-hot encoder와 matmul계층의 행렬 곱 계산(행렬의 특정 행 추출) 대신 사용 Embedding l.. 2020. 2. 6. CHAPTER 3 word2vec 3.1 추론 기반 기법과 신경망 단어를 벡터로 표현하는 방법 통계 기반 기법 추론 기반 방법 3.1.1 통계 기반 기법의 문제점 통계 기반 기법 - 학습 데이터를 한번에 처리(배치 학습) 추론 기반 기법 - 학습 데이터의 일부를 사용하여 순차적으로 학습(미니배치 학습) 3.1.3 신경망에서의 단어 처리 신경망에서 단어를 사용하기 위해 고정 길이의 벡터로 변환 one-hot 벡터 - 벡터의 원소 중 하나만 1, 나머지는 모두 0인 벡테 3.2 단순한 word2vec CBOW(continuous bag-of-words) 모델의 추론 처리 CBOW - context(주변 단어)로부터 Target(중앙 단어)을 추측하는 용도의 신경망 다중 클래스 분류 신경망 맥락에 포함시킬 단어가 N개일 경우 입력층도 N개 완.. 2020. 2. 3. 이전 1 다음 반응형