본문 바로가기
반응형
[논문 리뷰] Stock Market Trend Prediction with Sentiment Analysis based on LSTM Neural Network 본 논문에서는 시장 예측을 하기 위해 feature선택에 대해 다룬 논문이며 경제 뉴스의 감정 분석을 위해 LSTM을 사용한다. Introduction LSTM과 같은 딥러닝 기술들이 금융분야에서 효과적이며 이는 증명되었다. 이에따라 LSTM신경망에 기반한 주식 시장 예측의 영향요인 분석을 목표로 시장예측에 딥러닝 방법을 사용 feature selection, 경제 뉴스의 감정분석, 신경망 구조에 중점을 둔 논문 background 주식시장 예측은 산업계 학계 등 많은 분야에서 관심을 가지는 기술 신경망, 유전자 알고리즘, svm 등의 알고리즘으로 주가 예측 사용 정확도 향상의 문제점 데이터 noise 데이터 중복성 데이터 노이즈 overfitting 시장 감정 주식시장은 확률론적 분야 - 다양한 측면이.. 2020. 5. 5.
CHAPTER 7 RNN을 사용한 문장생성 Language모델의 문장 생성 순서 확률이 가장 높은 단어 선택 결과 일정 확률적 선택 각 후보 단어의 확률에 맞게 선택 샘플링 되는 단어 매번 바뀜 확률분포 출력, 샘플링을 반복 import numpy as np def softmax(x): if x.ndim == 2: x = x - x.max(axis=1, keepdims=True) x = np.exp(x) x /= x.sum(axis=1, keepdims=True) elif x.ndim == 1: x = x - np.max(x) x = np.exp(x) / np.sum(np.exp(x)) return x class BaseModel: def __init__(self): self.params, self.grads = None, None def for.. 2020. 3. 9.
반응형